DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition
نویسندگان
چکیده
منابع مشابه
DVS Benchmark Datasets for Object Tracking, Action Recognition, and Object Recognition
Benchmarks have played a vital role in the advancement of visual object recognition and other fields of computer vision (LeCun et al., 1998; Deng et al., 2009; ). The challenges posed by these standard datasets have helped identify and overcome the shortcomings of existing approaches, and have led to great advances of the state of the art. Even the recent massive increase of interest in deep le...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملa computational visual neuroscience model for object recognition
in this study with the inspirations from both neuroscience and computer science, a combinatorial framework for object recognition was proposed having benefited from the advantages of both biologically-inspired hmax_s architecture model for feature extraction and extreme learning machine (elm) as a classifier. hmax model is a feed-forward hierarchical structure resembling the ventral pathway in ...
متن کاملObject Detection , Tracking and Recognition for Multiple
| Video cameras are among the most commonly used sensors in a large number of applications, ranging from surveillance to smart rooms for videoconferencing. There is a need to develop algorithms for tasks such as detection, tracking, and recognition of objects, specifically using distributed networks of cameras. The projective nature of imaging sensors provides ample challenges for data associat...
متن کاملTracking-Based Automatic Object Recognition
The Problem: While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by using accumulated joint cooccurrences of the representations within the sequence to create a hierarchical binary-tree classifier of the representations. This classifier is useful to classify sequences as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroscience
سال: 2016
ISSN: 1662-453X
DOI: 10.3389/fnins.2016.00405